litellm: Add a tool to summarize a topic.

This commit is contained in:
Aman Agrawal 2024-10-24 05:22:24 +00:00 committed by Tim Abbott
parent 2675715ecb
commit c04a17255b
3 changed files with 168 additions and 0 deletions

View file

@ -0,0 +1,36 @@
# Summarize topic
Generate a short summary of the last 100 messages in the provided topic URL.
### API Keys
For testing you need access token from
https://huggingface.co/settings/tokens (or set the correct env
variable with the access token if using a different model)
In `~/.zuliprc` add a section named `litellm` and set the api key for
the model you are trying to use. For example:
```
[litellm]
HUGGINGFACE_API_KEY=YOUR_API_KEY
```
### Setup
```bash
$ pip install -r zulip/integrations/litellm/requirements.txt
```
Just run `zulip/integrations/litellm/summarize-topic` to generate
sample summary.
```bash
$ zulip/integrations/litellm/summarize-topic --help
usage: summarize-topic [-h] [--url URL] [--model MODEL]
options:
-h, --help show this help message and exit
--url URL The URL to fetch content from
--model MODEL The model name to use for summarization
```

View file

@ -0,0 +1,2 @@
zulip
litellm

View file

@ -0,0 +1,130 @@
#!/usr/bin/env python3
import argparse
import os
import sys
import urllib.parse
from configparser import ConfigParser
from litellm import completion # type: ignore[import-not-found]
import zulip
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--url",
type=str,
help="The URL to fetch content from",
default="https://chat.zulip.org/#narrow/stream/101-design/topic/more.20user.20indicators",
)
parser.add_argument(
"--model",
type=str,
help="The model name to use for summarization",
default="huggingface/meta-llama/Meta-Llama-3-8B-Instruct",
)
parser.add_argument(
"--max-tokens",
type=int,
help="The maximum tokens permitted in the response",
default=100,
)
parser.add_argument(
"--max-messages",
type=int,
help="The maximum number of messages fetched from the server",
default=100,
)
parser.add_argument(
"--verbose",
type=bool,
help="Print verbose debugging output",
default=False,
)
args = parser.parse_args()
config_file = zulip.get_default_config_filename()
if not config_file:
print("Could not find the Zulip configuration file. Please read the provided README.")
sys.exit()
client = zulip.Client(config_file=config_file)
config = ConfigParser()
# Make config parser case sensitive otherwise API keys will be lowercased
# which is not supported by litellm.
# https://docs.python.org/3/library/configparser.html#configparser.ConfigParser.optionxform
config.optionxform = str # type: ignore[assignment, method-assign]
with open(config_file) as f:
config.read_file(f, config_file)
# Set all the keys in `litellm` as environment variables.
for key in config["litellm"]:
if args.verbose:
print("Setting key:", key)
os.environ[key] = config["litellm"][key]
url = args.url
model = args.model
base_url, narrow_hash = url.split("#")
narrow_hash_terms = narrow_hash.split("/")
channel = narrow_hash_terms[2].split("-")[1]
topic = narrow_hash_terms[4]
channel = urllib.parse.unquote(channel.replace(".", "%"))
topic = urllib.parse.unquote(topic.replace(".", "%"))
narrow = [
{"operator": "channel", "operand": channel},
{"operator": "topic", "operand": topic},
]
request = {
"anchor": "newest",
"num_before": args.max_messages,
"num_after": 0,
"narrow": narrow,
# Fetch raw Markdown, not HTML
"apply_markdown": False,
}
result = client.get_messages(request)
if result["result"] == "error":
print("Failed fetching message history", result)
sys.exit(1)
messages = result["messages"]
if len(messages) == 0:
print("No messages in conversation to summarize")
sys.exit(0)
formatted_messages = [
{"content": f"{message['sender_full_name']}: {message['content']}", "role": "user"}
for message in messages
]
# Provide a instruction if using an `Instruct` model.
if "Instruct" in model:
formatted_messages.append(
{
"content": """
Summarize the above content within 90 words.
""",
"role": "user",
}
)
# Send formatted messages to the LLM model for summarization
response = completion(
max_tokens=args.max_tokens,
model=model,
messages=formatted_messages,
)
print("Summarized conversation URL:", url)
print(
f"Used {response['usage']['total_tokens']} tokens to summarize {len(formatted_messages)} Zulip messages."
)
print()
print(response["choices"][0]["message"]["content"])